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Although phosphorus monoxide is a spectroscopically well 
defined molecule1 and a prime candidiate for detection in 
interstellar space,2 it remains a scientific curiosity. The lack of 
a simple synthetic route to PO coupled with its high degree of 
instability has left the chemistry of this heterodiatomic molecule 
essentially unexplored. Unlike its analogue NO, for which an 
extensive coordination chemistry exists,3 only one report on 
complexed PO has appeared.4 In this communication we describe 
a method for accessing cluster bound phosphorus monoxide 
ligands, which involves the trapping of a PO fragment from the 
hydrolytic P-N bond cleavage of an aminophosphinidene group. 
The closo anion [RU4(CO)I2(M3-PO)]_, 1, which has an apical 
M3-PO ligand, has been fully characterized by an X-ray analysis 
of a salt. 

The replacement of M-PPh2 groups in the electron rich 64-
electron clusters Ru4(CO) I3(M-PR2)2 by aminophosphido ligands 
leads to a dramatic increase in reactivity.5 We have now observed 
that the rich and diverse chemistry of the mixed main group-
transition metal cluster m'rfo-Ru4(CO)i3(M3-PPh), 2,6 is signifi­
cantly expanded by the presence of a ir-donor diisopropylamino 
group on the phosphinidene ligand. Treatment of K2 [Ru4(CO) 13] 
(1.0 g, 1.2 mmol), generated in situ via the reduction of Ru3(CO) 12 

by K/Ph2CO,7 in THF with Cl2PNPr^ (0.22 mL, 1.2 mmol) at 
room temperature followed by filtration and chromatography on 
silica gel (eluant n-hexane) afforded Ru4(CO)i3(M3-PNPr'2),

8 3, 
as deep red crystals from CH2Cl2/MeOH at -10 0C (18-22% 
yield). The molecular structure of 3, not described here, closely 
resembles that of 2, with the phosphinidene fragment capping an 
open Ru3 face with an overall seven skeletal pair, five-vertex 
square pyramidal Ru4P framework. Unlike 2, however, solutions 
of 3 (0.100 g in 35 mL of C6H)4, reflux) readily decarbonylate, 
leading to the high-yield (65%) formation of the cluster Ru4-
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(CO) i2(M3-PNPr'2), 4, whose spectroscopic features9 are indicative 
of a highly symmetrical structure (Scheme 1). X-ray analysis10 

(Figure 1) revealed a closo five-vertex polyhedron with the m-
PNPr'2 fragment capping one face of an Ru4 tetrahedron. The 
simple conversion of nido square pyramidal 3 to closo trigonal 
bipyramidal 4 via loss of a two-electron donor has no precedent 
in iron group phosphinidene chemistry.'' Indeed closo ruthenium 
Ru4(CO) I2(M3-PR) clusters have proven elusive although a single 
iron analogue Fe4(CO)I2(M4-PPr')12* has been prepared. It, too, 
adopts a trigonal bipyramidal structural framework; however, 
unlike 4, the M4-PPr' fragment lies in the equatorial plane, 
symmetrically capping a butterfly array of metal atoms, closo-
OS4(CO)I2(M3-S), with a structure related to that of 4, is also 
known,12" but it is interesting to note that in the related cluster 
[FeRu3(CO)i2(NO)]-the nitrosylligand adopts a terminal, linear 
coordination mode to the unique iron atom.12c 

Activation of P-N bonds in aminophosphine13 and amino­
phosphido5'14 complexes has been previously observed. Following 
the conversion of a M-P(NPr'2)2 to a phosphinidene by hydro-
genolysis5a we reasoned that 4, with a single P-N bond, might 
provide access to other n-PX systems. Absorbing a CH2Cl2 

solution of 4 onto silica gel and subsequent removal of the solvent 
led, after extraction with CH3CN, to the quantitative formation 
of [Ru4(CO)I2(M3-PO)]I[Pr1JNH2].

15 The source of water in 
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generation of 1 from 3 via hydrolysis involves the formation of 
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by proton transfer to Pr'2NH. Solutions of 1 [Pr'2NH2] are pale 
orange in color. Cluster 1 can also be isolated as its Et4N

+ (ref 
15) salt following metathesis with Et4N [Cl]. The structure16 of 
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 31P(1H) NMR (CD3CN, S): 474.2 (s) ppm. 
(16) Red pseudohexagonalplatesof [Ru4(CO)I2(M1-PO)] 1[PTi2NH2], from 

CH2C12/C7H8 at 263 K are triclinic, space group Pl, with a = 8.983(2) A, 
b = 11.514(2) A, c = 14.030(2) A, a = 80.89(2)°, 0 = 87.00(2)°, y = 77.00-
(2)° at 295 K, V = 1395.8(3) A3, dxM = 2.117 g cm"3, and Z = I. Data were 
collected via oi scans as for 4 in the 29 range 4.0-52°. A total of 5514 reflections 
were collected, of which 4544 were observed [F > 6.Oa(F)]. The solution and 
refinement of the structure gave R = 0.0245 and R* = 0.0299. 
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Scheme 1 
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Figure 1. The molecular structure of CZaSO-Ru4(CO)I2(M3-PNPr1J), 4, 
illustrating the trigonal bipyramidal skeletal framework. Important bond 
lengths (A) and angles (deg): Ru(l)-Ru(2) = 2.848(1); Ru(l)-Ru(3) 
= 2.787(l);Ru(l)-Ru(4) = 2.810(1); Ru(2)-Ru(3) = 2.858(1); Ru(2)-
Ru(4) = 2.847(1); Ru(3)-Ru(4) = 2.890(1); Ru(2)-P(l) = 2.270(1); 
Ru(3)-P(l) = 2.298(l);Ru(4)-P(l) = 2.309(1); P(I)-N(I) = 1.636(3); 
Ru(l)-Ru(2)-P(l) = 97.4(1); Ru(l)-Ru(3)-P(l) = 98.5(1); Ru(I)-
Ru(4)-P(l) = 97.6(1). 

l[Pr'2NH2] (Figure 2) revealed a coordinated ^3-PO ligand17 

which symmetrically caps a closed triangular Ru3 face [Ru(2)-
P(I) = 2.297(1) A; Ru(3)-P(l) = 2.282(1) A; Ru(4)-P(l) = 
2.293(1) A]. The reaction has thus led to the hydrolysis of the 
P-NPr'2 bond in 3 and the elimination of diisopropylamine as the 
cation PrI2NH2

+. The only other example of a PO complex of 
which we are aware, [(»/5-Cp4)2Ni2W(CO)4(M3-PO)2], 5 (Cp4 = 
Pr'4CsH), was prepared by Scherer et al.4 via oxidation of 
coordinated P2 by (Me3Si)2O2.18 The P-O bond length of the 
H3-PO ligand in 1 [1.509(3) A] is short, comparable to values in 

(17) A referee has pointed out that 1 may also be described as a 
trimetallophosphine oxide. 
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Figure 2. The molecular structure of closo- [Ru4(CO) IJ0»3-
P=O)] 1 [Pr'2NH2], illustrating the coordinated P=O ligand. Important 
bond lengths (A) and angles (deg): Ru(l)-Ru(2) = 2.799(1); Ru(I)-
Ru(3) = 2.788(1); Ru(l)-Ru(4) = 2.818(1); Ru(2)-Ru(3) = 2.865(1); 
Ru(2)-Ru(4) = 2.856(1); Ru(3)-Ru(4) = 2.855(1); Ru(2)-P(l) = 
2.297(1); Ru(3)-P(l) = 2.282(1); Ru(4)-P(l) = 2.293(1); P(l)-0(13) 
= 1.509(3);Ru(l)-Ru(2)-P(l) = 97.7(l);Ru(l)-Ru(3)-P(l) = 98.4(1); 
Ru(l)-Ru(4)-P(l) = 97.3(1). 

tertiary phosphine oxides" and to that in the PO molecule itself.1 

The c ( P = 0 ) frequency in l[Pr'2NH2] (1075 cm-') is at lower 
energy than that found for 1[Et4N] (1169 cm-1) and reflects the 
presence of weak N—H-O= 1 P interactions in the former 
[0(13)~H(lx) = 2.09 A; 0(13a)-H(l>>) = 1.97 A; (a = -x, 1 
-y, 1 - z)]. The KCO) (CH2Cl2) stretches are at slightly higher 
energy for l[Pr'2NH2] vs 1[Et4N], suggesting that weak 0 - H 
interactions may also be present in solution. 

The route described here to coordinated PO ligands should be 
applicable to other phosphinidene complexes bearing NR2 

substituents. Furthermore, the triply bridging PO ligand provides 
a basic site for binding clusters to metallic and cationic supports. 
These results open the door to new developments in PO chemistry. 
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